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Abstract

Dividend derivatives are not simply a by-product of equity deriva-
tives. They constitute a distinct growing market and an entire suite
of dividend derivatives are offered to investors. In this paper we look
at two potential models for equity index dividends and discuss their
theoretical and practical merits. The main results emerge from a
downward jump-diffusion model with beta distributed jumps and a
stochastic logistic diffusion model, both providing an elegant solution
to the particular dynamics observed for dividends and cum-dividends,
respectively, in the market. Calibration results are discussed with mar-
ket data on Dow Jones Euro STOXX 50 dividend index for futures
and European call and put options.
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1 Introduction

Dividends played a major role in the development of equity financial products
over the years. Lu and Karaban (2009) showed that since 1926, dividends
have represented approximately one-third of total returns, the rest coming
from capital appreciation. Moreover, total dividend income has increased in
US six-fold between 1988 and 2008, reaching almost 800 billion USD. While
dividends have grown in proportion to increasing stock market capitaliza-
tion, evidence shows that dividends have also grown as a portion of personal
income. Furthermore, dividends are considered a good hedge against rising
inflation and they have in general lower volatility than equities.

Dividend risk is traded through many type of contracts from single-stock
and index to swaps, steepeners, yield trades, ETFs, options, knock-out div-
idend swaps, dividend yield swap and even swaptions. Brennan (1998) sug-
gested to strip off the equity index from its dividends and develop a market in
the dividend strips which should improve the informational efficiency in the
economy. Another financial innovation designed to offer dividend protection
is the endowment warrant, although, as discussed by Brown and Davis (2004)
the protection is only partial and pricing is not easy since it is a long-term
option having a stochastic strike price driven by the cash-flow of dividends.

Dividend derivatives have been traded over-the-counter (OTC) for some
time, mainly in the form of index dividend swaps. The first time dividend
derivatives were traded on an exchange was in 2002 in South-Africa, see
Wilkens and Wimschulte (2010), but with moderate success. NYSE Liffe
have launched futures contracts on the FTSE100 dividend index in May
2009. The dividend futures on the Dow Jones EURO STOXX 50 index in-
troduced on 30 June 2008 by Eurex has experienced a meteoric development.
This is not surprising since reinvested dividends accounted for almost half of
the Euro STOXX 50’s total returns since the end of December 1991. The
Euro STOXX 50 index dividend futures contract is the exchange version of
the OTC index dividend swap, allowing investors to get exposure to the gross
cumulative cash dividends associated with the individual constituents of the
Dow Jones EURO STOXX 50 Index during an annual period, so each futures
contract is for one year, starting and ending on the third Friday of December.
The contract value is EUR 100 per one index dividend point, with a mini-
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mum price change of 0.1, equivalent to 10 euros. The index dividend futures
started with seven annual contracts available on a December cycle, but it was
expanded to ten maturities from May 4, 2009. The settling at maturity is
done versus the weighted sum of the gross cumulative cash dividends paid by
each company that is part of the Euro STOXX 50 index during that period,
multiplied by the number of free-float adjusted shares, and the total is then
divided by the index divisor.

There is a buoyant market now driven by these contracts, establishing
dividends as an asset class of its own, see Manley and Mueller-Glissmann
(2008) for an interesting discussion. Dividend derivatives have many ap-
plications for investors. Equity derivatives traders and structured products
engineers must consider their dividend risk and manage its risk. Portfolio
managers with convertible bond positions and equity positions have exposure
to dividend risk. In some countries investing in dividends offer a degree of tax
reduction. Last but not least, carrying equity stock during systemic crises
may imply less dividend payments than expected so by taking positions on
dividend derivatives the investor may avoid liquidity pressures.

The article is structured as follows. Section 2 provides a literature review
of dividend-related literature. In Section 3 the common ideas behind the
current pricing of dividend derivatives is employed. Section 4 describes the
data used in this research. Some model free considerations are provided in
Section 5 but the main modelling results are contained in Sections 6 and 7.
contains Numerical results using the available data are provided in Section 8
while the last Section concludes.

2 Literature Review

Black (1990) argued that investors value equity by predicting and discount-
ing dividends. In the finance literature the overwhelming conclusion is that
future dividends are uncertain, both in their timing and size. Harvey and
Whaley (1992) and Brooks (1994) extracted implied dividends employing the
put-call parity but these estimators were too noisy for predicting the next
dividend. Implied dividends have been utilised as part of the estimation pro-
cess for risk-neutral densities by Ait-Sahalia and Lo (1998). Dividend strips
were proposed first by Brennan (1998). The empirical properties of dividends
have been amply discussed by van Binsbergen et al. (2012).
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Practitioners1 used to deal with dividend paying stocks by assuming
known dividends, in cash or as an yield, and then proceed with an option
pricing calculator such as Black-Scholes for example, with a deflated stock
price resulting from stripping out the presumed known dividends over the
life of the option from current stock price.

How important are dividends for options pricing? Dividends impact on
the valuation of financial assets such as plain stock and options. Models that
forecast dividends have had mixed results in the literature and the empir-
ical evidence is mixed on their usefulness, particularly for long maturities.
Chance et al. (2000) developed a forecasting model for dividends taking into
account seasonality, mean reversion effects and showed that it is possible to
produce unbiased estimators of dividend related quantities. Other papers
proposing various approaches to forecast the dividend yields are van Bins-
bergen et al. (2012), Chen et al. (2012), Kruchen and Vanini (2008), Buehler
et al. (2010).

Chance et al. (2000) analysed index option prices based on ex-post real-
ized dividend information with the corresponding options valued using ex-
ante dividend forecasts and they found that the latter does not lead to bi-
ased pricing, although the sample error is quite large. On the other hand,
the implied dividends from S&P 500 options may improve significantly the
forecasts of market returns as demonstrated by Golez (2011). Using data
between 1994 and December 2009, Golez first shows that the dividend-price
ratio gives a poor forecast for future returns and dividend growth. Then, a
model-free formula for the implied dividend yield is determined from index
futures cost-of-carry formula and the put-call parity. The implied dividend
yield is then combined with the realized dividend-price ratio to calculate
the implied dividend growth and an adjusted dividend-price ratio that have
substantial predictive power, in-the-sample and out-of-sample, for market
returns.

The first attempt to take into account the impact of uncertain dividend
yield on equity option pricing was due to Geske (1978) who provided an
adjusted Black-Scholes formula. Moreover, Geske pointed out that assuming
that dividends are known when in fact they are not, has the effect to mis-
estimate the volatility. Nevertheless, Chance et al. (2002) demonstrated that

1Some interesting readings in this area can be found in Bos and Vandermark (2002),Bos
et al. (2003), Frishling (2002), de Boissezon (2011), Lu and Karaban (2009), Manley and
Mueller-Glissmann (2008)
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when dividends are stochastic and discrete such that the present value of
all future dividends is observable and tradable in a forward contract, Black-
Scholes formula still applies for pricing European options.

Broadie et al. (2000) proved that both dividend risk and volatility risk
are relevant for pricing American options contingent on an asset that has
stochastic volatility and uncertain dividend yield. Schroder (1999) described
a change of numeraire method for pricing derivatives on an underlying that
provides dividends. A robust theoretical framework expanding this idea has
been described by Nielsen (2007).

Korn and Rogers (2005) recognized that in practice dividends on stocks
are not paid continuously, they are paid at discrete times, and they proposed
a general approach for stock option pricing, where the absolute size of the div-
idend is random but its relative size is constant. Moreover, their model can
be adapted to deal with dividends announced in advance and with changing
in dividend policy. Bernhart and Mai (2012) generalized this line of mod-
elling dividends as a discrete cash-flow series and proposed a no-arbitrage
methodology capable of embedding many well-known stochastic processes
and general dividend specification.

Although the common assumption regarding dividends with respect to
option prices is that they are known, either as a dividend yield or as a
present value of gross cumulative dividends over the option life, empirical
evidence suggests that dividends have a stochastic nature. Lioui (2005) de-
rived analytical formulae for pricing forward and futures on assets with a
stochastic dividend yield and Lioui (2006) developed European options pric-
ing formula of Black-Scholes type, incorporating stochastic dividend yield
and using a stochastic mean-reverting market price of risk. Furthermore,
Lioui (2006) showed that stochastic dividend yields may lead to a different
type of put-call parity, from the one that is normally used to reverse engineer
the dividend yield from market European option prices. Buehler et al. (2010)
presented an equity stock price model with discrete stochastic proportional
dividends. Their model assumes that dividend ratios are a linear combination
between the classic known proportional dividends and a stochastic dividend
part described by an Ornstein-Uhlenbeck process.
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3 Modelling Dividends

3.1 The ideas so far

In general pricing dividend derivatives has been done in two ways: a model-
free financial engineering approach described next, and a bottom-up econo-
metric driven approach whereby analysts use data driven methods to forecast
the future dividends and their time.

3.1.1 Known Present Value of Dividends

Denoting with Divt,T the gross dividend paid on the equity index over the
period [t, T ] the forward price at time t on the cumulative dividend stream
{Divt,T}t≤u≤T is given by

FWt(Divt,T ) = PVt(Divt,T )(1 + rt,T )
(T−t) (1)

where rt,T is the risk-free interest rate and PVt(Divt,T ) is the present value of
the gross dividend stream for the period [t, T ] at time t; or with continuous
compounding

FWt(Divt,T ) = PVt(Divt,T ) exp (rt,T (T − t)) (2)

For simplicity, from now on we shall use only continuous compounding of
interest rates.

The well known put-call parity for European options with same strike
price K, maturity T contingent on the index S gives a model-free way to
calculate the implied dividend quantity from the corresponding European
options prices.

PVt(Divt,T ) = St + pEt (K, T )− cEt (K, T )−K exp [−rt,T (T − t)]. (3)

This formula works, however, only for European options. If the options are
American, one can use the double inequality

St−PVt(Divt,T )−K ≤ CA
t (K, T )−PA

t (K, T ) ≤ St−PVt(Divt,T )−K exp [−rt,T (T − t)]
(4)

leading to the model-free boundaries

St−K+PA
t (K, T )−CA

t (K, T ) ≤ PVt(Divt,T ) ≤ St−Ke−rt,T (T−t)+PA
t (K, T )−CA

t (K, T ).
(5)
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Another way to model dividends is via the dividend yield. If qt,T is
the continuously compounded dividend yield for the period [t, T ] then Golez
(2011) suggests reverse engineering both the implied risk free rate and the
implied dividend yield from the futures price formula and the put-call parity

Ft(T ) = St exp [(rt,T − qt,T )(T − t)] (6)

where Ft(T ) is the futures price at time t for maturity T ,

cEt (K, T )− pEt (K, T ) = St exp [−qt,T (T − t)]−K exp [−rt,T (T − t)] (7)

From the two equations (6) and (7) we get

rt,T =
1

T − t
log

[
Ft(T )−K

cEt (K, T )− pEt (K, T )

]
(8)

and then

qt,T = − 1

T − t
log

[(
cEt (K, T )− pEt (K, T )

St

)
+

K

St

(
cEt (K, T )− pEt (K, T )

Ft(T )−K

)]

(9)
Since PVt(Divt,T ) = exp [−qt,T (T − t)] then the formula (2) can be used
to determine the value of the forward price on the dividends on STOXX50
index. Alternatively one can reverse-engineer from put-call parity directly
the present value of all gross returns

PV (Divt,T ) = St −
[
cEt (K, T )− pEt (K, T )

] Ft

Ft −K
. (10)

3.1.2 Models for stock with discrete dividends

Consider that the future dividend dates are given generically at discrete time
ti, where t < t1 < . . . < tN < T and t is today and T denotes future maturity.

Even assuming that dividends are deterministic and paid discretely, ab-
sorbing them as a cash-flow into the stock price process can lead to signifi-
cantly different valuation results when pricing options on equity. This point
has been made by Haug et al. (2003) and also by Frishling (2002). The latter
discussed three different approaches to model the linkage between dividends
and stock.
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The first one is the escrowed model given by





dCt = rCtdt + σCtdWt ;
St = Ct +

∑
t<ti<T Dtie

−r(ti−t) ;
ST = CT .

(11)

where {St}0≤t≤T is the stock price process, {Ct}0≤t≤T is the capital price
process and Dti is the fixed lump sum dividend paid at time ti < T , and of
course r is the constant risk-free rate. Although the process {St}0≤t≤T is not
a geometric Brownian motion, the process {Ct}0≤t≤T is, and then the Black-
Scholes model can be applied to the latter with C0 = S0−

∑
t<ti<T Dtie

−r(ti−t).
The second model has been described more formally in Musiela and

Rutkowski (1997) and it is linked to an idea of working with an accumu-
lation process rather than dividend stripped process. Formally, the model is
derived from 




dAt = rAtdt+ σAtdWt ;
St = At −

∑
0<ti<tDtie

r(ti−t) ;
S0 = C0, .

(12)

Once again the stock price process {St}0≤t≤T is not a geometric Brownian
motion but the accumulator process {At}0≤t≤T is and for contingent claims
on stock one can work with the latter.

The third model is a standard jump-diffusion model with deterministic
jumps at deterministic times

{
dSt = rStdt+ σStdWt ti < t < ti+1;
Sti = S−

ti
−Dti .

(13)

This model is not lognormal because of the discontinuity at dividend paying
time ti. Moreover, when all future dividend payments are uncertain, this
model becomes very complex, particularly when taking into consideration
that the index dividend futures term structure goes to ten years.

Frishling (2002) showed via an example that for the same dividend pay-
ment and identical parameters for stock price it is possible to get very dif-
ferent distributions for the stock at maturity T when using different models.
Hence, the method employed to model dividends can have a great impact on
the final results.
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3.2 A Critique of Previous Methods

At a superficial level it seems that the dividend futures price can be deter-
mined in a straightforward manner, without any modelling. In this section,
I challenge this view.

One criticism easy to draw, mainly from an academic point of view is
that the relationships presented above in Section 3.1 assume constant risk-
free interest rates rt,T . Working with an implied risk-free rate as in (8)
somehow has the role to circumvent this problem.

Secondly, the put-call parity (7) tacitly assumes a deterministic dividend
yield. Similarly for the formula (6), which actually is a formula for the
forward price and not the futures price when interest rates are stochastic.

This points out to the biggest problem of the many methods presented
in the literature. They assume that the futures price on the dividends of
equity index is congruent to the forward price on the same underlying. It is
well-known that the futures price will coincide with the forward price when
risk-free interest rates are constant or uncorrelated with the dividends stream.
If there is positive(negative) correlation, then futures prices will exceed (be
less then) forward prices. Hence, the first step of any modelling in this area
would be to investigate the correlation between the dividends series and the
corresponding risk-free interest rate time series.

Furthermore, even if futures prices on dividends would be equal to their
forward prices counterparts, the implied dividend yield provided by for-
mula (9) may be sensitive to the choice of the exercise price K. One possible
solution would be to take an average of the values obtained for all available
strike prices K.

Another problem with some approaches used in literature and also in the
industry is assuming a known dividend payment D. As pointed out also
in Haug et al. (2003), dividends cannot be larger than the corresponding
stock price, either at a point in time or on a present value basis for the
future dividend cash-flows implied by a given model. Hence, if the supporting
equity underlying generating the dividends evolves stochastically in time, the
dividend payment cannot be fixed.
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4 Data Description

The Dow Jones EURO STOXX 50 Index Dividend Futures contract traded
on Eurex has a value of 100 EUR per one index dividend point. The contract
is cash settled on the first exchange day after the settlement day which is
the third Friday of December of each maturity year2. The minimum price
change is 0.1 points and now there are ten annual contracts available on the
December maturity market calendar cycle. The final settlement price in this
futures contract is determined by the final value of the underlying Dow Jones
EURO STOXX 50 DVP, the index dividends calculated by STOXX for that
annual period. Only gross unadjusted dividends that are declared and paid
in the contract period by any of the individual components of the Dow Jones
EURO STOXX 50 equity index are considered for settlement purposes. The
gross ordinary dividends are the unadjusted cash dividends paid between the
third Friday of December in preceding year, excluding, and the third Friday
of December of current year, including.

The futures prices are quoted daily. Hence, index companies paying mul-
tiple dividends will contribute on each ex-dividend date based on the free
float adjusted share.

4.1 Dividend Index Data

The descriptive statistics for the Dow Jones Euro STOXX 50 index and its
corresponding cum-dividend series in index points are presented in Table 1.
Similarly, Table 2 displays the descriptive statistics for all ten dividend fu-
tures contracts.
The time series of paid dividends for Dow Jones Euro STOXX 50 index is
presented in Figure 1. Dividends are measured in index points. One clear
characteristics of this data is that it looks like a jump process.

2If the third Friday is not an exchange day then the settlement day is the exchange
day immediately preceding that day.
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Table 1: Descriptive Statistics for the Dow Jones Euro STOXX 50 index and
its corresponding cum-dividend series in index points. The historical series
is daily between 22 December 2008 and 17 December 2012.

STOXX50 index CumDividend
Mean 2579.89 64.95
Standard Error 8.67 1.39
Median 2592.71 88.27
Mode 2487.08 7.60
Standard Deviation 278.08 44.43
Kurtosis -0.95 -1.63
Skewness -0.29 -0.38
Minimum 1809.98 0.00
Maximum 3068.00 124.34
Count 1028 1028
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8

10

12

14

16

Daily Dividends

Figure 1: The daily dividends in index points paid on Dow Jones Euro
STOXX50 index. The series is daily between 22 December 2008 and 17
December 2012.
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Another way dividends are reported is with the cum-dividend series within
each calendar market year. In this way it is easier to grasp the relation to
the dividend futures contracts traded on Eurex or for index dividend swaps
contracts traded OTC. The cum-dividend series depicted in Figure 2 display
a very interesting regular pattern. The shape is clearly sigmoidal with an
inflection point almost half-way in June.

0

20

40

60

80

100

120

140

CumDividend 

Figure 2: The cum-dividend daily time series in index points paid on Dow
Jones Euro STOXX50 index. The series is daily between 22 December 2008
and 17 December 2012.

4.2 Dividend Futures Data

The descriptive statistics of the dividend futures prices are reported in Ta-
ble 2. The last three maturities of the currently ten contracts traded actively
on Eurex from 4 May 2009, and in general these three contracts have very
similar prices.
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Table 2: Descriptive Statistics for the Futures on Dow Jones Euro STOXX
50 Dividend index for all maturities. The historical series is daily between
22 December 2008 and 8 February 2012 for the first seven maturities and
between 1 May 2009 and 8 February 2012 for the last three yearly maturities.
Data courtesy of Eurex.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
Mean 115.56 102.05 96.42 94.55 94.38 94.96 95.79 100.44 101.37 102.20
s.e. 0.22 0.65 0.65 0.62 0.61 0.60 0.60 0.54 0.56 0.58
Median 113.45 107.70 99.50 98.30 98.30 99.00 100.10 103.60 104.80 106.30
Mode 112.80 113.90 88.60 104.40 114.80 115.20 105.60 105.50 78.60 111.60
Std 6.26 18.50 18.42 17.55 17.35 17.03 17.14 14.45 15.04 15.42
Kurtosis -0.19 0.49 -0.15 -0.53 -0.72 -0.85 -0.89 -1.02 -0.97 -0.95
Skewness -0.02 -1.18 -0.84 -0.64 -0.52 -0.44 -0.42 -0.33 -0.35 -0.39
Min 96.10 54.00 51.70 53.70 54.50 55.50 57.20 69.90 69.50 69.20
Max 125.10 125.30 119.90 120.60 122.90 124.30 126.50 128.80 131.10 132.50
Count 806 806 806 806 806 806 806 717 717 717

The graph in Figure 3 shows the Euro STOXX 50 dividend index futures
settlement prices from Eurex for the first seven maturities, using a longer
historical data. The nearest maturity contract has had a different evolution
compared to the remaining six maturities futures depicted3, which have a
more correlated dynamics. The only time when they all seem to converge is
at rollover time when the pull to maturity effect is noticeable.

3To an extent the second maturity dividend futures contract also departs from the rest.
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Figure 3: The futures curves for Euro STOXX50 dividend index. The daily
series for the first seven yearly December maturities are presented for the
period 22 December 2008 to 8 December 2012.

The corresponding implied dividend yields are calculated by dividing at
any point in time the futures price to the corresponding equity Dow Jones
Euro STOXX50 index. The evolution of the implied dividend yields is illus-
trated in Figure 4, on a log scale.
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Figure 4: The implied futures yields for Euro STOXX50 dividend index, on
a log scale. The daily series for the first seven yearly December maturities
are presented for the period 22 December 2008 to 8 December 2012.

The entire Dow Jones Euro STOXX50 dividend index futures surface is
displayed in the two graphs in Figure 5. The majority of trading activity
seems to occur at the short end of the curve while the long end of the futures
curves seem to be flat in general. This is in line with the discussion of the
shape of the dividend futures curves in de Boissezon (2011).
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Figure 5: Dow Jones Euro STOXX 50 dividend index futures surface covering
all ten maturities over the period 4 May 2009 to 8 Dec 2012.

4.3 Discount Factor Data

For pricing purposes discount factors to the required maturity are also needed.
In the aftermath of the subprime crisis the role of the funding rate has be-
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come prominent. Hence, here we work with discount factors calibrated from
the EURIBOR-swap curves. In order to have a smooth pasting from euro
futures implied rates to swap implied rates we use 3-month tenor swaps with
a 3-month Euribor reference rate.

5 Model Free Considerations

Previous studies, see Baldwin (2008), have hinted that dividend yields im-
plied by the EURO STOXX 50 Index dividend swap contracts are uncorre-
lated to the three-month EURIBOR rates. Here we have redone this analysis
for the period 23 December 2008 to 8 February 2012 for the first six matu-
rities of the Eurex futures contracts on EURO STOXX 50 dividend index.
The OLS regression lines depicted on each graph all have very low R2 values,
confirming previous conclusions that interest rates are uncorrelated4 to div-
idend futures prices. This empirical artefact supports5 the idea that futures
prices may be congruent with forward prices in the case of Euro STOXX 50
dividend index.

4Remark that it is possible to have a low R2 value but the explanatory regression
variable to be significant. Hence, for each December maturity the null hypothesis that the
changes in Euribor rates do not impact upon the changes on implied dividend yields was
tested. In all cases, we have failed to reject the null hypothesis.

5A more rigorous approach would consider the relationship between the interest rates
and the underlying dividend index itself, not the futures prices on it.
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Figure 6: Scatter plots of daily changes in dividend futures implied yields
and the corresponding three month EURIBOR funding rates. Data for the
period 23 December 2008 to 8 February 2012. The daily first differences in
implied dividend yields are on the vertical axis in index points while the daily
changes in 3-month Euribor funding equivalent rate to the maturity of the
corresponding futures contract are on the horizontal axis.
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6 Modelling Dividends Cash-Flows

For pricing and calibrating dividend index derivatives a time grid given by

T0 < t0 < t1 . . . < tn1
< . . . < T1 < . . . < T2 < . . . < T10 < . . . < T∗

is considered, where T ∗ is a very large but still finite maturity, Ti are yearly
December maturities with i = 1, . . . , 10, and tj are daily times so tj+1− tj =
∆t, for any positive integer j and Ti+1 − Ti = 1, for any i.

6.1 A jump-diffusion model for dividends

The first model analysed here is a jump-diffusion model with jumps tailored
for dividends only. Thus, the jumps can be only downward jumps. The
dividend payments are intrinsically linked to the corresponding equity index.
The dynamics therefore should follow the equity index. Under the physical
measure P

dSt

St

= µdt+ σdWt + d

(
Nt∑

i=1

[Vi − 1]

)
(14)

where {Wt}0≤t≤T ∗ is a Wiener process, {Nt}0≤t≤T ∗ is a Poisson process with
arrival rate θ accounting for the payment times of dividends per unit of time
and {Vi}i≥1 are i.i.d with distribution function H representing the jump sizes.
The three stochastic structures are assumed to be mutually independent. As
it is standard, µ is a real constant and σ is a positive number.

The SDE (14) has the solution

St = S0 exp

{(
µ− 1

2
σ2

)
t+ σWt

} Nt∏

i=1

Vi (15)

or, slightly more generally

ST = St exp

{(
µ− 1

2
σ2

)
(T − t) + σ

√
T − tZ

} NT∏

i=Nt

Vi (16)

with Z ∼ N(0, 1).
For the approach proposed here the following assumptions are made.
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Assumption 6.1. All jumps in the equity index dynamics are downward,

reflecting dividend adjustments.

Assumption 6.2. All dividends are in index points and are a stochastic

proportion of the contemporaneous equity index.

Hence, this model lies between the usual jump-diffusion models for equity
asset pricing Merton (1990) and the jump to default credit risk models. The
jump sizes here can be seen as Vi ∈ (0, 1). The price of the index ex-dividend
is StVt so the dividend paid for day t is St(1−Vt), and this will be paid with
probability θ∆t. In order to simplify the notation, δt ≡ 1 − Vt henceforth.
Thus, the cum-dividend in index points for the period (t, T ] is

Div(t,T ] =

j=m∑

j=1

Stj+k
δtj+k

Ytj+k
(17)

where m = T−t
∆t

and t ≡ tk, and {Ytj}j≥1 are Bernoulli variables taking the
value 1 with probability θ∆t and the value zero with probability 1− θ∆t.

Under a risk-neutral pricing measure Q, the dividend futures price with
maturity T1 can be determined now directly for any t ∈ [0, T1− 1] as follows.

E
Q
t (Div(t,T1]) = E

Q
tk

(
m∑

j=1

Stj+k
δtj+k

Ytj+k

)
(18)

= θ∆t

m∑

j=1

E
Q
tk

(
Stj+k

)
E
Q
tk
(δtj+k

)

= θ∆tEQ
tk
(δtj+k

)

m∑

j=1

F S
tk
(tj+k)

where F S
tk
(tj+k) denotes the futures price at time tk for maturity tj+k for the

equity index S.
The model presented so far is quite general and it covers a wide range of

specifications that depend further on how jumps are viewed in relation to the
underlying index6 and also on various distributions for the jump sizes such

6While here it is assumed that jumps are fully diversifiable and therefore jump risk
is non-systematic, other models may specify a relationship between jumps and risk-
preferences of the market representative investors.
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that jumps are only downward7

Since this is a full parametric approach a third assumption is made about
the distribution of the jump sizes.

Assumption 6.3. {Vi}i≥1 are i.i.d and Vi ∼ Beta(α, β).

Now, if V ∼ Beta(α, β) then δ = 1 − V is distributed with Beta(β, α).
Then, for any k and any j

E
Q
tk
(δtj+k

) =
β

α + β
.

The dividend futures price in (18) is fully determined now from the futures
curve on the equity EURO STOXX 50 index. Under our modelling assump-
tions, as in Merton (1990) and Duffie (1995), a unique risk-neutral measure
Q is the one associated with the SDE

dSt

St

= (r − θE(V − 1))dt+ σdWt + d

(
Nt∑

i=1

[Vi − 1]

)
(19)

where r is the riskfree rate assumed constant. Given our parametric assump-
tion of a beta distribution for the jump sizes, the SDE under the risk-neutral
pricing measure is

dSt

St

= (r − θ
β

α + β
)dt+ σdWt + d

(
Nt∑

i=1

[Vi − 1]

)
. (20)

While this equation cannot be used for the dividends themselves, it is still
necessary for this model because the future dividend payments are propor-
tional payments δτ of the corresponding equity index Sτ .

6.2 Calibration Methodology of the Jump-Diffusion Model

for Dividends

For practical purposes we need to estimate the parameters α, β, σ, θ driving
the dynamics of the downward jump-diffusion model with beta distributed

7One easy way to ensure that Vi ∈ (0, 1) for any i is to specify V = exp (−U) where
U is a lognormal or Gamma distributed random variable. However, this specification
is computationally more cumbersome to work with. Another possibility is to take V =[
1

π
arctan(U)

]2
where U ∼ N(µu, σ

2

u
).
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jumps in equation (20). The arrival rate θ and the parameters α, β calibrating
the jump-size can be estimated from the daily dividend payment series.

For the parameter σ one can estimate it directly from the time series
of equity index after filtering out the days when dividends were paid. The
total volatility would then have two components, one given by the index and
one by dividend jumps. Alternatively, the implied volatility gauged from the
options traded on the equity index can be used.

The risk-free rate is considered here as a constant8 approximating the
cost of funding to the required horizon. Different values are used for different
horizons and the risk-free rate is calibrated from Euribor-swap market curve
on the day of calculation.

For pricing futures and European options a Monte Carlo approach is fol-
lowed that simulates daily paths to the required maturity. Each day we
simulate possible values from a standard geometric Brownian motion under
the risk-neutral pricing measure. This is equivalent to using the continuous
time diffusion part in (20). Then, we simulate in a binary fashion whether a
dividend payment is made. The probability of success is equal to θ∆t. Condi-
tional on a dividend payment being made a random draw from a Beta(β, α)
distribution is made for the size of the jump9 δt. If a dividend payment
is made the value of the simulated equity index is reduced proportionately
exactly with the size of the jump.

This methodology has the advantage that once paths are simulated to
required maturities, any other products can be priced accordingly. A similar
procedure can be implemented to produce risk measures derived from the
dynamics of the model presented in this section, under the physical measure.

7 A Stochastic Logistic Diffusion Model

7.1 The financial engineering model

From the graph in Figure 2 the cumulative dividends time series paid on the
Euro STOXX50 index display an interesting stationarity and yearly period-

8A more elaborated approach would involve having a separate short-rate model or
market model for the risk-free rate. Given that post subprime-liquidity crisis it is difficult
to say which model would be most appropriate for interest free rate concept, we prefer to
use a unique number for r.

9Remark that since V ∼ Beta(α, β) and knowing that δ = 1 − V it follows that
δ ∼ Beta(β, α).
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icity. The most striking characteristic is the sigmoidal shape of the series
within each year and the fact that there is an acceleration of dividend pay-
ments followed by a change of convexity during the period May-June.

It would seem useful if one could model directly the cum-dividends series.
In this section we denote by Xt the cum-dividend from the beginning of the
year Ti−1 until the current time t, with t ≤ Ti, and i = {1, . . . , 10}.

Under the physical measure P the main model proposed in this research
is given by the following SDE

dXt = bXt

(
1− Xt

F

)
dt+ σXtdW

P
t . (21)

This is the stochastic diffusion version of the Verhulst-Pearl differential model
describing constrained growth in biology. This model has been called also
the geometric mean reversion model. It appeared in finance literature early
on but financial research on it has been sparse so far. Merton (1975) arrived
at this process looking at the output-to-capital ratio derived from a growth
model with uncertainty based on a Cobb-Douglas production function and
assuming that gross savings are a deterministic fraction of output.The gen-
eral model discussed by Metcalf and Hasset (1995) contains the model given
in (21) as a particular case.

It can be proved, see Appendix, that the solution to the equation (21) is
given by

Xt =
X0 exp

(
(b− σ2

2
)t+ σWt

)

1 + bX0

F

∫ t

0
exp

(
(b− σ2

2
)s+ σWs

)
ds

(22)

where X0 ≡ XTi−1
is the initial point. The solution shows that Xt > 0 at

any time t for any parameters and initial starting point. The interpretation
of the parameters is interesting in itself in a dividends market space. The
upper limit for the corresponding logistic process10 is F while b is the speed
of production of dividends. As pointed out by Merton (1975) and reinforced
recently by Yang and Ewald (2010), for the parameter F of the stochastic
logistic diffusion model it is not true that limt→∞ EP(Xt) = F .

The model given above is in isolation of any dynamics of the equity index
itself. This would solve the problem posed by the APT equation but the

10The logistic process is defined purely by the drift so the equation is the following ODE
dXt

dt
= bXt

(
1− Xt

F

)
which can be solved analytically to give the logistic function with the

well-known sigmoidal shape.
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price to pay for this direct modelling approach is that the stochastic logistic
diffusion model described by (21) implies an incomplete market for dividend
payments. Fortunately the dividend futures contracts traded on Eurex are
completing the market. This can be done period by period. Following Bjork
(2009) we can fix the martingale measure Q by determining the market price
of risk λ(t, Xt) such that

dXt = Xt

(
b− λ(t, Xt)σ − Xt

F

)
dt+ σXtdW

Q
t . (23)

Since at each moment in time t the market will be completed for all 10 years
spanned by the running futures contracts, I assume that λ(t, Xt) ≡ λi, for
all i = {1, . . . , 10}. Each parameter λi will be identified by exact calibration
to dividend futures prices from the model with the dynamics given by the
SDE for any Ti−1 < t ≤ Ti

dXt = Xt

(
b− λiσ − Xt

F

)
dt+ σXtdW

Q
t . (24)

The distribution of the solution in (22) has been derived in closed-form by
Yang and Ewald (2010) but it is cumbersome for practical calculations even
of vanilla derivatives such as European put and call options.

Nevertheless, the calibration of parameters λ can be easily done from
futures market prices. As in Bjork (2009) the futures price of the payment
Div(Ti−1,Ti] is equal to E

Q
t (XTi

). Thus, the parameter λi can be determined
by first discretizing the equation (25) into

XTi−1+j∆t = XTi−1+(j−1)∆t

[
1 +

(
b− λiσ − XTi−1+(j−1)∆t

F

)
∆t+ σ

√
∆tZj

]

(25)
where Zj ∼ N(0, 1), ∀j, and then calculating M different paths between
XTi−1

and XTi
which can be used to compute the required expectation by

Monte Carlo

E
Q
t (XTi

) =
1

M

M∑

k=1

X
(k)
Ti

.

While this procedure appears computationally intensive, it is not in practice.
Moreover, there are two major advantages of this Monte Carlo approach:
a) the futures curve provided by the dividend futures market on Eurex will
be perfectly calibrated, and b) other derivatives, including path-dependent
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derivatives, can be directly priced since path values are readily available
under the correct martingale measure.

While for the maturities 2 to 10 the simulation exercise is more straight-
forward since the entire year is used for path simulations of cum-dividends,
for the current year care must be taken since at any time t > T0 some div-
idends may have been paid already. This is more relevant for calibration
purposes.

7.2 Calibration Methodology

For calibration purposes we need to calibrate the parameters b, F and σ from
historical time-series, under the physical measure. The model in (21) can be
discretized in the following form

Xt+∆t −Xt

Xt

= b∆t− b∆t

F
Xt + σ

√
∆tZ (26)

Denoting Rt = Xt+∆t−Xt

Xt
for the return series, under the assumption that

Rt ≡ 0 when Xt = 0, the corresponding regression model can be fit to cum-
dividend data within a year

Rt = α + βXt + εt, (27)

with εt ∼ N(0, s2). The parameters of the regression model can be linked to
the financial engineering model parameters through the following formulae

b̂ =
α̂

∆t
, F̂ = − α̂

β̂
, σ̂ =

ŝ√
∆t

(28)

Remark that if F is considered known then there are only two parameters
to calibrate b and σ and this can be done from the regression through the
origin model

Rt = βYt + εt

where Yt = 1− 1
F
Xt.

8 Numerical Examples

In this section we shall explore some numerical exemplification of the two
dividend models proposed in this paper.
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Table 3: Estimation of parameters for dividend size series by method of
moments and by maximum likelihood. Data is daily courtesy of Eurex.

Period α̂MM β̂MM α̂MLE β̂MLE θ̂MLE

22 Dec 2008 to 18 Dec 2009 5.0123 0.5717 8.0254 0.9584 0.1811
21 Dec 2009 to 17 Dec 2010 6.4962 0.6694 9.3934 0.9971 0.1863
20 Dec 2010 to 16 Dec 2011 7.2357 0.7204 10.1200 1.0321 0.1927
19 Dec 2011 to 17 Dec 2012 7.5453 0.7668 10.1790 1.0559 0.1936

8.1 Jump-down diffusion model

The arrival rate of dividends can be estimated very easily from data since
the sample mean is the maximum likelihood estimator which is unbiased and
also a sufficient statistic. Hence, I have estimated the parameter θ over three
different periods to see if there are large differences. The results presented
in Table 3 suggest that the arrival rate estimated from the entire historical
data until the given date is stationary although one can argue in favor of a
time trend11. The parameters r and σ are calibrated from historical data.
Here we have used r = 3% as an average funding rate and σ = 21% for the
volatility of the Dow Jones Euro Stoxx 50 index.

Before showing the results of calibration on a chosen date, 20 Dec 2010,
we need to introduce a scaling parameter c. Preliminary results using Monte
Carlo simulation12 indicate that applying the model with jump downward
dividends has the effect of extreme bias in calibrating the dividend futures
prices. A closer analysis reveals the source of the problem. The downward
jump allows jumps close to zero which are equivalent to dividend payments
closer to the actual value of the index. In practice this is not true and the
parameter c, with c < 1, allows rescaling dividends to a more suitable range
(0, c) rather than the (0, 1) range of the beta distribution. This parameter can
be finely tuned to calibrate the dividend futures curve. Somehow surprisingly,
for 20 Dec 2010, c = 0.625 seems to work very well for all maturities. The
results for pricing the European call and put prices for the first four maturities
are displayed in Figure 7. With the exception of the put prices for the 16
Dec 2011 maturity, the fit is remarkable.

11We have also estimated the arrival rate at two random points in time and we got
0.1573 for 30 Apr 2009 and 0.1900 for 8 Feb 2012. This values provide some evidence
against a time trend but more analysis is needed in this direction.

12These are not shown here due to lack of space.
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(b) 21 Dec 2012
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(c) 20 Dec 2013
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(d) 19 Dec 2014

Figure 7: European Option pricing with the downward jump-diffusion beta
dividend model for first four December maturities for the indicated maturi-
ties.
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The option pricing results on the same day for the remaining six matu-
rities are illustrated in Figure 8. Overall the fit is excellent, although this is
exemplified for only one day.
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(a) 18 Dec 2015
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(b) 16 Dec 2016
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(c) 15 Dec 2017

60 70 80 90 100 110 120 130 140
0

5

10

15

20

25

30

35

40

45

Di
v 
Op
ti
on
 P
ri
ce
s

 

 

Call Div Market Prices
Call Div Monte Carlo SLD Prices

60 70 80 90 100 110 120 130 140
0

5

10

15

20

25

30

35

40

Strike Prices

Di
v 
Op
ti
on
 P
ri
ce
s

 

 
Put Div Market Prices
Put Div Monte Carlo SLD Prices

(d) 21 Dec 2018
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(e) 20 Dec 2019
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Figure 8: European Option pricing with the downward jump-diffusion beta
dividend model for first four December maturities for the indicated maturi-
ties.
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8.2 Stochastic Logistic Diffusion Model

Following the methodology presented in Section 7 the parameters b, F and σ

are calibrated from the OLS estimates of the corresponding linear regression
models over one year of data. The results presented in Table 4 indicate a
good parameter stability, although the variance has been reduced somehow
for the last year.

Table 4: Estimation of parameters for cum-dividend series by OLS estimation
of simple linear regression model with daily data. s2 is the residual sum of
squares used to estimate the variance of the regression. Data is courtesy of
Eurex.

Period α β s2 b F σ

22 Dec 2008 to 18 Dec 2009 0.0553 -0.0005 0.0123 19.9264 110.61 2.10
21 Dec 2009 to 17 Dec 2010 0.0588 -0.0005 0.0125 21.1892 104.71 2.12
20 Dec 2010 to 16 Dec 2011 0.0601 -0.0005 0.0168 21.6541 118.71 2.46
19 Dec 2011 to 17 Dec 2012 0.0404 -0.0003 0.0048 14.5683 115.57 1.32

Table 5: Estimation of parameters for cum-dividend series by OLS estimation
of simple linear through origin regression model with daily data under the
assumption that F = 120. Data is courtesy of Eurex.

Period β s2 b F σ

22 Dec 2008 to 18 Dec 2009 0.0537 0.0123 19.3406 120 2.10
21 Dec 2009 to 17 Dec 2010 0.0559 0.0125 20.1248 120 2.12
20 Dec 2010 to 16 Dec 2011 0.0599 0.0167 21.5976 120 2.45
19 Dec 2011 to 17 Dec 2012 0.0399 0.0048 14.3713 120 1.32

The estimation results in Tables 4 and 5 indicate that parameters may
change but not very much. The greatest variation year on year seems to occur
for parameter F . A more robust estimation process using Bayesian inference
may improve the accuracy of the parameters estimators for the stochastic
logistic diffusion model.

The parameters estimated from data over one year will be kept constant
for all derivatives calculations during subsequent year.
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Figure 9: Term structure of market price of risk parameter λ for all ten
December maturities calibrated from Eurex market futures prices on the
indicated days. The calibration is done by matching the dividend futures
market prices with the theoretical dividend futures given by the SLD model

In Figure 9 the term structure of market price of risk parameter λ are
illustrated for three different days. These values are calculated at the begin-
ning of the December roll and they are fixing the martingale pricing measure
for each of the ten December maturities. The shape of the term structure of
market price of risk for Euro STOXX50 dividends can be inverted, upward
trending and upward then downward trending. Overall the curves presented
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in Figure 9 suggest that the term structure of λ is almost always concave,
but this is more a conjecture at this stage of research in this area.

Once the pricing measure is determined by the calibration to the futures
curves, all other contingent claims on the Euro STOXX 50 dividend index
can be calculated directly. Applying the Monte Carlo methodology described
in Section 7 it is possible to determine the price of European call and put
options, as well as other path dependent derivatives.

The graphs in Figures 10 and 11 depict13 the smile fit for European op-
tions on Euro STOXX 50 dividend index on 20 Dec 2010 based on market
data from Eurex. First, the estimated parameters from the historical evolu-
tion of dividends paid on the STOXX50 index between 21 Dec 2009 and 19
Dec 2010, are used. The smile fit is very good overall, considering the small
number of parameters underpinning the stochastic logistic diffusion model.
If parameter F is fixed to 120, the smile fit exhibited in Figure 11 indicates
almost a perfect fit, only the nearest maturity showing a worsening in smile
fit. This may suggest that the representative market agent is using F = 120
as indicative for upper limit of dividends in this market!

Once again teh nearest maturity seems to be the hardest to calibrate.
However, this may be the result of using a relatively simple model to calculate
the derivatives prices for all ten maturities simultaneously.

13Because of space restrictions here we show only the first eight maturities; however the
graphs for all ten maturities are described in greater detail in the Appendix.
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Figure 10: European call and put option price calibrated on 20 Dec 2010
using b = 21.2, F = 104.7, σ = 2.12
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Figure 11: European call and put option price calibrated on 20 Dec 2010
using b = 21.2, F = 120, σ = 2.12
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9 Conclusion

The literature on pricing dividend derivatives is sparse. From the equity
derivatives pricing literature it seems conclusive that dividends are stochastic
in nature. Hence, it is important to find models that can be easily imple-
mented but that also preserve the stochastic character of dividends.

A jump diffusion model with beta distributed jump sizes was proposed
for equity dividend index. The jumps are only downwards and the dividend
payments are determined also by the evolution of the equity index itself. A
Monte Carlo approach was developed for pricing vanilla dividend derivatives.
It was illustrated that this model can fit the smile of the European call and
put dividend index options.

For the stochastic logistic diffusion model, it would be useful to calculate
analytically the conditional moments of the cum-dividend variable Xt. Re-
garding calibration, although the dividend marking process is year by year,
from a statistical inference point of view, past data may allow an improved
estimation procedure of the main parameters. Another idea would be to
consider a generalized stochastic logistic model such that the drift better
captures the acceleration of dividends during the middle of the year and the
smooth landing at the end of the year.

The two models developed here for pricing dividend derivative are very
different, the first one modeling the dividend payment series while the latter
follows the cum-dividend series. Both models rely on the Monte Carlo ap-
proach for implementation but there are immediate advantages in doing so
since other path dependent derivatives would be priced directly based on the
same set of simulations.
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A European Options Calibration

Parameters estimated from dividend data between 21-Dec-09 and 20-Dec-10
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Figure 12: European call and put option price calibrated on 20 Dec 2010
using b = 21.2, F = 104.7, σ = 2.12 for first four maturities
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Figure 13: European call and put option price calibrated on 20 Dec 2010
using b = 21.2, F = 104.7, σ = 2.12 for maturities five to eight
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(a) 20-Dec-19
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(b) 18-Dec-20

Figure 14: European call and put option price calibrated on 20 Dec 2010
using b = 21.2, F = 104.7, σ = 2.12 for maturities nine and ten
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Calibration with F fixed at 120
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(g) 15-Dec-17
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(i) 20-Dec-19
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(j) 18-Dec-20

B Closed-form solution of stochastic logistic

diffusion model

Here we show how to derive the analytical solution of the SDE for the stochas-
tic logistic diffusion model given in the paper by equation (21).

dXt = bXt

(
1− Xt

F

)
dt+ σXtdW

P
t . (29)

Considering the transformation Zt =
F
Xt

we get via Ito’s lemma that

dZt = [(σ2 − b)Zt + b]dt− σZtdW
P
t (30)

Standard stochastic calculus can be applied to solve directly the linear coef-
ficients SDE of the type

dut = (a1ut + a2)dt+ b1utdW
P
t .

The solution is

ut = Ψt

[
u0 + a2

∫ t

0

Ψ−1
s ds

]
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where Ψt = exp
(
(a1 − b21

2
)t+ b1W

P
t

)
.

Taking a1 = σ2 − b, a2 = b and b1 = −σ implies that

Ψt = exp

(
(
σ2

2
− b)t− σW P

t

)

Hence,

Zt = exp

(
(
σ2

2
− b)t− σW P

t

)[
Z0 + b

∫ t

0

exp

(
(
σ2

2
− b)s− σW P

s

)]

which leads to the solution

Xt =
X0 exp

(
(b− σ2

2
)t+ σWt

)

1 + bX0

F

∫ t

0
exp

(
(b− σ2

2
)s+ σWs

)
ds

. (31)
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